HTTP Routing
6 minute read
The HTTPRoute resource allows users to configure HTTP routing by matching HTTP traffic and forwarding it to Kubernetes backends. Currently, the only supported backend supported by Envoy Gateway is a Service resource. This task shows how to route traffic based on host, header, and path fields and forward the traffic to different Kubernetes Services. To learn more about HTTP routing, refer to the Gateway API documentation.
Prerequisites
Follow the steps from the Quickstart task to install Envoy Gateway and the example manifest. Before proceeding, you should be able to query the example backend using HTTP.
Verify the Gateway status:
kubectl get gateway/eg -o yaml
egctl x status gateway -v
Installation
Install the HTTP routing example resources:
kubectl apply -f https://raw.githubusercontent.com/envoyproxy/gateway/latest/examples/kubernetes/http-routing.yaml
The manifest installs a GatewayClass, Gateway, four Deployments, four Services, and three HTTPRoute resources. The GatewayClass is a cluster-scoped resource that represents a class of Gateways that can be instantiated.
Note: Envoy Gateway is configured by default to manage a GatewayClass with
controllerName: gateway.envoyproxy.io/gatewayclass-controller
.
Verification
Check the status of the GatewayClass:
kubectl get gc --selector=example=http-routing
The status should reflect “Accepted=True”, indicating Envoy Gateway is managing the GatewayClass.
A Gateway represents configuration of infrastructure. When a Gateway is created, Envoy proxy infrastructure is
provisioned or configured by Envoy Gateway. The gatewayClassName
defines the name of a GatewayClass used by this
Gateway. Check the status of the Gateway:
kubectl get gateways --selector=example=http-routing
The status should reflect “Ready=True”, indicating the Envoy proxy infrastructure has been provisioned. The status also provides the address of the Gateway. This address is used later to test connectivity to proxied backend services.
The three HTTPRoute resources create routing rules on the Gateway. In order to receive traffic from a Gateway,
an HTTPRoute must be configured with parentRefs
which reference the parent Gateway(s) that it should be attached to.
An HTTPRoute can match against a single set of hostnames. These hostnames are matched before any other matching
within the HTTPRoute takes place. Since example.com
, foo.example.com
, and bar.example.com
are separate hosts with
different routing requirements, each is deployed as its own HTTPRoute - example-route, ``foo-route
, and bar-route
.
Check the status of the HTTPRoutes:
kubectl get httproutes --selector=example=http-routing -o yaml
The status for each HTTPRoute should surface “Accepted=True” and a parentRef
that references the example Gateway.
The example-route
matches any traffic for “example.com” and forwards it to the “example-svc” Service.
Testing the Configuration
Before testing HTTP routing to the example-svc
backend, get the Gateway’s address.
export GATEWAY_HOST=$(kubectl get gateway/example-gateway -o jsonpath='{.status.addresses[0].value}')
Test HTTP routing to the example-svc
backend.
curl -vvv --header "Host: example.com" "http://${GATEWAY_HOST}/"
A 200
status code should be returned and the body should include "pod": "example-backend-*"
indicating the traffic
was routed to the example backend service. If you change the hostname to a hostname not represented in any of the
HTTPRoutes, e.g. “www.example.com”, the HTTP traffic will not be routed and a 404
should be returned.
The foo-route
matches any traffic for foo.example.com
and applies its routing rules to forward the traffic to the
“foo-svc” Service. Since there is only one path prefix match for /login
, only foo.example.com/login/*
traffic will
be forwarded. Test HTTP routing to the foo-svc
backend.
curl -vvv --header "Host: foo.example.com" "http://${GATEWAY_HOST}/login"
A 200
status code should be returned and the body should include "pod": "foo-backend-*"
indicating the traffic
was routed to the foo backend service. Traffic to any other paths that do not begin with /login
will not be matched by
this HTTPRoute. Test this by removing /login
from the request.
curl -vvv --header "Host: foo.example.com" "http://${GATEWAY_HOST}/"
The HTTP traffic will not be routed and a 404
should be returned.
Similarly, the bar-route
HTTPRoute matches traffic for bar.example.com
. All traffic for this hostname will be
evaluated against the routing rules. The most specific match will take precedence which means that any traffic with the
env:canary
header will be forwarded to bar-svc-canary
and if the header is missing or not canary
then it’ll be
forwarded to bar-svc
. Test HTTP routing to the bar-svc
backend.
curl -vvv --header "Host: bar.example.com" "http://${GATEWAY_HOST}/"
A 200
status code should be returned and the body should include "pod": "bar-backend-*"
indicating the traffic
was routed to the foo backend service.
Test HTTP routing to the bar-canary-svc
backend by adding the env: canary
header to the request.
curl -vvv --header "Host: bar.example.com" --header "env: canary" "http://${GATEWAY_HOST}/"
A 200
status code should be returned and the body should include "pod": "bar-canary-backend-*"
indicating the
traffic was routed to the foo backend service.
JWT Claims Based Routing
Users can route to a specific backend by matching on JWT claims. This can be achieved, by defining a SecurityPolicy with a jwt configuration that does the following
- Converts jwt claims to headers, which can be used for header based routing
- Sets the recomputeRoute field to
true
. This is required so that the incoming request matches on a fallback/catch all route where the JWT can be authenticated, the claims from the JWT can be converted to headers, and then the route match can be recomputed to match based on the updated headers.
For this feature to work please make sure
- you have a fallback route rule defined, the backend for this route rule can be invalid.
- The SecurityPolicy is applied to both the fallback route as well as the route with the claim header matches, to avoid spoofing.
cat <<EOF | kubectl apply -f -
apiVersion: gateway.envoyproxy.io/v1alpha1
kind: SecurityPolicy
metadata:
name: jwt-example
spec:
targetRefs:
- group: gateway.networking.k8s.io
kind: HTTPRoute
name: jwt-claim-routing
jwt:
providers:
- name: example
recomputeRoute: true
claimToHeaders:
- claim: sub
header: x-sub
- claim: admin
header: x-admin
- claim: name
header: x-name
remoteJWKS:
uri: https://raw.githubusercontent.com/envoyproxy/gateway/main/examples/kubernetes/jwt/jwks.json
---
apiVersion: gateway.networking.k8s.io/v1
kind: HTTPRoute
metadata:
name: jwt-claim-routing
spec:
parentRefs:
- name: eg
rules:
- backendRefs:
- kind: Service
name: foo-svc
port: 8080
weight: 1
matches:
- headers:
- name: x-name
value: John Doe
- backendRefs:
- kind: Service
name: bar-svc
port: 8080
weight: 1
matches:
- headers:
- name: x-name
value: Tom
# catch all
- backendRefs:
- kind: Service
name: infra-backend-invalid
port: 8080
weight: 1
matches:
- path:
type: PathPrefix
value: /
EOF
Save and apply the following resources to your cluster:
---
apiVersion: gateway.envoyproxy.io/v1alpha1
kind: SecurityPolicy
metadata:
name: jwt-example
spec:
targetRefs:
- group: gateway.networking.k8s.io
kind: HTTPRoute
name: jwt-claim-routing
jwt:
providers:
- name: example
recomputeRoute: true
claimToHeaders:
- claim: sub
header: x-sub
- claim: admin
header: x-admin
- claim: name
header: x-name
remoteJWKS:
uri: https://raw.githubusercontent.com/envoyproxy/gateway/main/examples/kubernetes/jwt/jwks.json
---
apiVersion: gateway.networking.k8s.io/v1
kind: HTTPRoute
metadata:
name: jwt-claim-routing
spec:
parentRefs:
- name: eg
rules:
- backendRefs:
- kind: Service
name: foo-svc
port: 8080
weight: 1
matches:
- headers:
- name: x-name
value: John Doe
- backendRefs:
- kind: Service
name: bar-svc
port: 8080
weight: 1
matches:
- headers:
- name: x-name
value: Tom
# catch all
- backendRefs:
- kind: Service
name: infra-backend-invalid
port: 8080
weight: 1
matches:
- path:
type: PathPrefix
value: /
Get the JWT used for testing request authentication:
TOKEN=$(curl https://raw.githubusercontent.com/envoyproxy/gateway/main/examples/kubernetes/jwt/test.jwt -s) && echo "$TOKEN" | cut -d '.' -f2 - | base64 --decode
Test routing to the foo-svc
backend by specifying a JWT Token with a claim name: John Doe
.
curl -sS -H "Host: foo.example.com" -H "Authorization: Bearer $TOKEN" "http://${GATEWAY_HOST}/login" | jq .pod
"foo-backend-6df8cc6b9f-fmwcg"
Get another JWT used for testing request authentication:
TOKEN=$(curl https://raw.githubusercontent.com/envoyproxy/gateway/main/examples/kubernetes/jwt/with-different-claim.jwt -s) && echo "$TOKEN" | cut -d '.' -f2 - | base64 --decode
Test HTTP routing to the bar-svc
backend by specifying a JWT Token with a claim name: Tom
.
curl -sS -H "Host: bar.example.com" -H "Authorization: Bearer $TOKEN" "http://${GATEWAY_HOST}/" | jq .pod
"bar-backend-6688b8944c-s8htr"
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.